
See
- ey =: a

ae
oleae

y

FUTURE PERFECT In this final part of
our robotics series we summarise what we

~ have discussed and look to the future to see
how robots are likely to develop

PROFESSIONAL HEAVYWEIGHT The
Compaq Plus is a portable that was one of
the first IBM PC compatibles on the market.

~ Wesee how well it has stood the test of time

BRAIN POWER We continue with our
series on vertical software by looking in
detail at BrainStorm, a package that is so
sophisticated that it has been hailed as the
first “thought processor’ |

ss Sones ss ss

CHART TOPPER We learn how to write
the procedures to create barcharts and pie
charts in LoGo on all the popular micros

_ INTEGRATED CIRCUIT TO |
INTERPRETER A weekly glossary o

computing terms
ss Stas

oy
Hf

east Pests

SHEESH

: i oe : i ii a ee i i

i a cn

SPECIAL ASSIGNMENT We continue to)
develop our adventure game in BASIc and 866
encounter the first of the special locations

| _that the adventurer must pass through

00000000 © 00000 00

SSeS AER ao SSeS

— BBCMEMORY MAPPING Now that we
_ have defined the important areas and 8
functions of the operating system common
to all home computers, we turn our attention

- to that of the BBC Micro and concentrate on
its particular features

MICRO ELECTRONICS We progress with
the construction of our robot by building
four microswitch sensors and write a short.
‘program to test their operation

8/6

=

Metal Collar Worker

Sensors

Infrared, light, etc

Power

Tool Hand

Print Out

For outputting
receipts,

schedules,

instructions

Load/Storage Space

Probes
Range of measuring
instruments, light pens,
logic probes

Foot

Aerial

Remote

communications

Disk Drive |
For data and software

— input/output

Monitor And Keypad
~The robot is a mobile

computer and can be

used as such;

maintenance engineers
would also need access

to robot software and

diagnostics programs.

Speaker

Gives synthesised
speech output

Microphone

For speech and sound
recognition

The robot can ‘sit’ on its
base, rotate its legs
and change its feet for
grippers, thus
exchanging enormous
manipulability and
strength for mobility

Roses in Sas cane

Our robotic series has concentrated in some
detail on all the various aspects. of robot
behaviour. In this concluding instalment we
consider the practical limitations imposed
on present-day robot design and discuss
possible future developments in the field as
a result of new technological advances. _
Ree eee

Our robotics series has shown how the real world
of robots remains far removed from the fictional
concept of mechanical thinking beings. Our own
imaginations have conditioned us to expect

certain things of robots. We expect them to be able
to move around freely, under their own power; to
see, hear, and feel the world around them; to
converse with us on philosophy and science, or at
least to communicate with us in an intelligent
fashion; and to manipulate objects and ideas as we
would do. We have, in other words, created robots
in our own image. When we look critically at
existing commercial, industrial, and hobbyist
robots, we are often surprised at how well they can
accomplish their specific tasks, while still feeling
disappointed that they cannot do more.

Knowing what we do now about the nature of
robot design and implementation, what can we

STEVE CROSS

Future Tense
If the general-purpose human-
like robot is ever developed ata
cost that makes it a reasonable
substitute for semi-skilled
human labour, it would need a
highly developed ‘intelligence’
comprising knowledge
database, sensory integration,
Skills database and learning
software. An intelligence like
this could be packaged ina
variety of bodies — we show
one possible type that might
function as a semi-skilled light
or heavy industrial worker

THE HOME COMPUTER ADVANCED COURSE 861

=

Visual Variations
Knowledge of an object can be
stored as a ‘template’ image of
the archetypal object, plus a
series of variation data
statements; each variation
statement can be applied to the
template to produce a different
image that still fits the type
definition. An image from the
robot's sensors is scanned by
some gross analysis module
that gives a first guess at the
Class of object in view. Each
object in that class is then
matched in all its variations
against the received image until
a match is found. The statistical
confidence with which this
match is made determines
whether the new image's
variations from the template are
radical enough to require anew
variation data statement to be
generated from it

Received image ~

Gross Recognition

Module

Variant image

generator

New variation

data

862 THE HOME COMPUTER ADVANCED COURSE

expect, realistically and practically, of future
robots? Let’s take a look at each of the major
design areas in turn.

MOVEMENT
It is extremely unlikely that robots will walk on
anything resembling a human leg in the near
future. Too much processing time and space
would have to be devoted to the effort of:
-maintaining balance, while robot joints and
electric or hydraulic musculature lack the flexiblity
or freedom humans are accorded by the
interaction of muscle, tendon, and cartilage. In
addition, there are many times when a robot
would be severely hindered by having to get
around on two legs. Recently, though, some
experimental robots have been built with four or
six legs, resembling insects. This may offer an
interesting design variation for some robot
applications.

Database

nowledge Databas

No match

Continue search

Is

CR < 80%
?

Familiar match

End search

For other applications, such as military
operations, planetary exploration, and more
conventional uses around the home, wheels
currently offer the most practical method of
movement, and this is unlikely to change. Robot
movement will become more fluid, but will
probably never rival the beauty and grace of a
human athlete in motion.
Many industrial robots and smaller robot arms

are necessarily fixed in place, with their
movements confined to a very specific area of
action, since they are designed to perform one or
two well-defined tasks. Unless the nature of
industrial assembly changes radically, even roving
industrial robots will probably remain relatively
confined: they will continue to follow tracks, ride
on rails, or swing from overhead racks. It is
possible that advances in automation and robotic
design will bring about a radical change in
industrial production methods, but it is impossible
to predict what such changes might be.

One key element of movement is the necessity
of the robot to respond to its environment. This

_ means that the robot must be well equipped with a
sensory system, and that sensory input must
correlate directly with its movement.

SENSORS |
Robots can be fitted with sophisticated sensing
equipment that extends their perceptions in areas
“new or unfamiliar to humans. Proximity sensors,
motion detectors, precise discrete positional
feedback devices and noise detectors with a very
large range of perceptible frequencies all give a
robot the ability to collect more varied data than a
human can. Visual systems are becoming more
accurate, with increased resolution of perceived
images. Voice synthesis and _ recognition
techniques, still in the very early stages of
development, are certain to become increasingly
sophisticated and will play a major part in the
development of robotics.

Utility robots, used mainly in industrial
applications, will most likely continue to be fitted
only with those sensors required to perform their
given tasks. Robot arm welders, for example, have
no need for speech or complex visual feedback.
They can perform their jobs accurately and
quickly, with a minimum of sensory input, and
extraneous perceptions would possibly be a
hindrance.

General-purpose robots, designed to learn
from experience and emulate human thought
processes, would have to be fitted with as many
sensors as possible. It would be crucial for the
robot to be able to investigate its environment
independently and assimilate the information it
gathered. Humans rely heavily, for instance, on a
combination of visual and auditory feedback to
comprehend speech. We often tend to ignore this
synthesis of sensations, particularly when thinking
in terms of robot design. But for a robot to
communicate with a human being, to understand
language rather than merely recognise it, such a

At present, the amount of data a robot can
accept and deal with is severely restricted by the
amount of memory required to store sensory
input, and by limitations on processing power and
speed, A robot can store a visual image of an
object, such as an apple, and connect the image to
a name. Storing the image occupies memory, and
the better the robot’s visual resolution the more
memory is needed to maintain the image. Since all
apples are not alike, however, the robot must
either have enough memory to store a
characteristic sampling of apple images, or an
algorithm that recognises variations and is able to
rotate the basic image so the apple can be viewed
from any position. With even a minimal level of
resolution — say 256 pixels per image — the
number of variations can reach well into the
thousands.

Memory demands will probably be met in the
future by higher capacity RAM chips (1 Mbit
chips are currently being developed), and through
the use of dedicated RAM chips that store
‘variational’ data. The general-purpose data held
in these chips can be called on as needed by the
processor to clarify a variety of different images,
almost like a subroutine in a BASIC program.

In addition to a huge memory, true sensory
awareness for a robot would require data to be
coming from many sources simultaneously, and to
be processed very rapidly. Existing processors
would be unable to handle the sheer volume of
information coming in at any one time, and data
would soon begin to pile up, waiting to be
processed. The likely solution to this problem is
the use of two or more high-speed, high-capacity
processors, working in parallel. A controlling
processor could then act as a manager, distributing
tasks to idle processors elsewhere in the system.
Progress is being made very rapidly toward

solving the hardware problems facing researchers.
But a robot will need very complex software to
enable it to understand what is being processed. In
other words, the robot needs a mind to know what
to do with its perceptions.

ROBOTICS APPLICATION

ma Be

Saree Sen Ae : SAVORS ante ck A =

As we have seen in discussing movement an
sensors, there are two major directions for
robotics. The first, and most likely to be exploited
soon, is the area of intelligent tools, or utility
robots. Industrial arms and automated
manufacturing systems that perform specific
tasks, no matter how intricate, need only be
provided with carefully-defined controlling
software. A robot arm can be given a set of co-
ordinates and programmed to execute a sequence
of actions without understanding what it is doing,
where it is or any details of its environment. The
result might be a perfectly painted door panel ona
car assembly line, or a well-cleaned car in an
automated car wash. As robots are asked to do a
wider variety of jobs, however, these are
necessarily less clearly defined. If they must move
about a room where the contents change from day
to day, they must be able not only to gather and
process information, but also to incorporate new
perceptions into their understanding of the world.
The robot must be given controlling and operating
software, but it must have room to grow.

Trying to create a mechanical mind opens
important questions, as yet to be resolved, about
the way humans think and learn. For instance,
how much does a human infant actually know at
birth? Is a human adult entirely the product of its
environment, or of its heredity, and what is the
relationship between the two? Does a human
being start out with a set of internal constructs that
help it learn language and mathematics and
aesthetics, and if so how do they work? As Igor
Aleksander and Piers Burnet point out in their
robotics book, Reinventing Man (published by
Kogan Page in 1983), it is difficult to answer these
questions without being able to experiment
directly on the human brain. Perhaps, in the
future, the robots we create in our image will help
us to improve our understanding of ourselves.
Although such questions are not purely
theoretical, as experiments being carried out now
aim to accomplish just this, the idea of a thinking
robot is unlikely to be realised for a very long time.

THE HOME COMPUTER ADVANCED COURSE 863

Convoy !
The techniques of robotics are
likely to make their biggest
impact on society when
incorporated in special-purpose
low-grade tools such as cranes,
earth-movers, local delivery
vehicles and heavy transport.
Here we show a robot earth-
mover loading a train of robot
trucks on a construction site.
When loaded, each truck moves
semi-intelligently to an
assembly point and hitches
itself to a train of trucks. The
train moves along the public
roads under the power of the
individual trucks that comprise
it, but is controlled by the
human driver of the lead
vehicle. Blending the human
skills of decision and command
with the brute strength and
single-minded intelligence of
robots is likely to prove the
cheapest and most profitable
use of existing resources and
future technology

KEVIN JONES

BRAIN POWER

In the introduction to our vertical software
series (See page 844), we mentioned how
Caxton Software’s BrainStorm program was
being used by a group of parents of teenage
heroin addicts to organise their campaign
against hard drugs. Here, we take a detailed
look at this unique package.

BrinSiocn has been called a ‘thought processor,
but that doesn’t mean that the program tries to
supersede the brain. What BrainStorm really does

1s help you organise your thoughts. A direct
analogy with pre-electronic methods is useful in
understanding precisely what it does.

In planning any complex project, it helps to
make lists of what you have to do. A list of the
main objectives will generate sub-lists of how to
complete each item on the preceding list, and so on
until the planner gets dizzy from shuffling around
pieces of paper. Any changes — deciding that a
main list item should be in the sub-list of another
item, for instance — can mean so much erasing
and writing-in that the system becomes
unmanageable. BrainStorm makes such changes
and developments as simple as the cut-and-paste
functions found on word processors — so the
expression ‘thought processor’ isn’t quite so
misleading, after all.
Any item in each list or sub-list can be promoted

into becoming the heading for a lower sub-list, and
if stmilar activities in different lists need to be
linked together, they can be given the same name,
termed namesakes. In that case, anything added to
a sub-list headed by a namesake is added to all the
other lists using the namesake.
Anyone familiar with the rather unfriendly

editing commands of a word processing package
such as WordStar will find it quite easy to get used
to the non-mnemonic cursor control commands.
Pressing the Control key (CTRL) in conjunction

864 THE HOME COMPUTER ADVANCED COURSE

with the S$ key moves the cursor to the left. CTRL —
D, CTRL—Eand CTRL— X move the cursor right, up

~_ and down respectively, and these four keys make a
logical pattern on the keyboard. In any case, it is
possible to redefine these. Less easy to get used to
is the fact that you can cursor up and down when
entering text, but have to change to ‘amend’ mode
(using CTRL — A) to move left or right within a line.

PROGRAM OPERATION
BrainStorm’s opening menu offers 11 options,
each selected by an initial letter, most of which are
self-explanatory: Use, Load, Print, |D Drive (to log-
on toa different drive from the default), Clear (to
erase the current model from memory), Save,
Write (to print to disk), Directory, Xit, Merge, and
Kill
To begin, the user presses U, and the program

enters typing mode immediately. Ideas can be
entered as a more or less random list (known as a
‘model). For instance, an example model might
consist of:

Read manual
Start typing list
Type sub-list
Edit list

The control commands are not revealed
immediately, but will be listed by pressing ?. By
moving the cursor up to any item in the list and
pressing CTRL — R, the designated item is
‘promoted’ to being the heading of a sub-list.
Similarly, any item on that sub-list can be made the
heading of a new sub-list, and so on until memory
runs out. ‘To get back to the previous list, CTRL — C
is pressed.

Items can be moved around, either within lists
or to lists on other levels, by labelling them with the
@ sign, and then using CTRL — G (for Get) or CTRL
— P (for Put) to execute the move. After CTRL —G
is used, the @ sign automatically moves to the next
item on the list; therefore, pressing CTRL — G again
will get the next item, and so on. This is a valuable
facility for moving a whole series of items to a
lower or higher sub-list.

If you wish to insert new items within an existing
list, all you have to do is to move the cursor to the
beginning of the line that is to follow the new item,
and type it in. When you press RETURN the rest of
the list is moved down a line to make space for it.
Pressing CTRL — A (for Amend) allows any item to
be altered.

By giving items in different lists the same name
— for example, a date — they become namesakes

-and are automatically cross-referenced. So if a
given list required a certain event to happen on a

ae

particular day, say on January 1, a list of events for
that date could be created, and this would allow a
schedule of the day’s activities to be continually
updated by cross-referencing.
Any number of namesakes can be created, and

then accessed in sequence, using CTRL — S for the
next and CTRL — D for the previous occurrence.
This is called a duckshoot sequence, so that after
the last occurrence, CTRL — § will loop back to the
first.

PRINTING LISTS
It is, of course, possible to print out the lists, and
they are usually formatted with the indentation
signifying the levels of the list. For example:

Read manual
Take manual from box

Turn to contents
_. Find page required
Read page

Return manual to box
Start typing list

Press CTRL — R to promote list item as new
heading

Type sub-list
Press CTRL — C to return to previous list

Edit list
Press CTRL — A to alter an entry

The amount of indentation is specified by the user.
It is also possible to edit lists outside

BrainStorm. If they have been saved using the
Write-to-disk command, they will be recognised as
documents by WordStar and other word
processing programs, and can be edited, printed
and, if necessary, reSAVEd. This means, for
instance, that BrainStorm could be used for
preparing the synopsis of a book, which could then
be written using a regular word processing
program, accessing the BrainStorm.Doc file as the
book progresses.

Because of the flexibility of the program, this
process can start with the very earliest jotting
down of rough ideas — again, something that is
normally done on scraps of paper — which then
become chapter headings (under which the
contents are listed). If an item within a chapter
looms large enough to become a chapter in its own
right, this can easily be accomplished. Similarly,
chapter headings that turn out to be less important
than was thought at first can be ‘demoted’.

Thus, the rough outline of the book begins to
reveal itself, and since WordStar or similar
programs can access BrainStorm files, the
transformation of this outline into the finished
manuscript flows naturally out of the earliest
thought processes. It also means that it is not
necessary to adopt the rather laborious
procedures necessary within BrainStorm, for
instance, if one wishes to print in double or triple
spacing. Douglas Adams, the author of The Hitch-
hiker’s Guide to the Galaxy, used BrainStorm to
develop the adventure game based on his books
using this method.

The program comes with a sample model
(called SAMPLE.BRN), which includes the skeleton
of a schedule planner, name-and-address file, a list
of tasks (sub-listed as ‘urgent’, ‘important’, and
‘don’t forget’), plus a notebook section. This is
quite valuable, and can be added to one’s own
models using the Merge option.

BrainStorm is easy to learn to use. The loose-
leaf manual is very clear (it was written using
-BrainStorm itself), but the commands are always
available from an on-screen menu, making
constant reference to the manual unnecessary.

Not all the commands are mnemonic, so some
may be hard for users to remember, but a program
called INSTALLB is provided, which allows every
command to be reconfigured, and the menus to be
altered to conform to the new set-up. This is
extremely clearly set out, and is completely menu-
driven.

THE HOME COMPUTER ADVANCED COURSE 865

JAN McKINNELL

In the last instalment of our adventure game
project we designed routines to enable the
player to pick up objects. Now we must
develop the corresponding routines that
allow the player to drop any objects he may
be carrying. We also look at the first of the
‘special’ locations.

The DROP subroutine eae many similarities to
the TAKE routine described on page 846. Indeed,
we can use the same object checking routines that
were developed for use with the TAKE command.
Three checks on the object are made during the
TAKE routine. The first is designed to test whether
or not the second part of the command phrase
contains a valid object. This is done by checking

866 THE HOME COMPUTER ADVANCED COURSE

ce sti

each word of the command phrase systematically
against the object names in the inventory array —
IVS(,). If a match is found then a variable, F, is set,
giving the position of the matched object within
the array. This validity check must also be used in
the DROP routine to establish whether the object
exists and, if it does, to determine its pesos in the
inventory.

The second check used in the TAKE routine is
also used in the DROP routine; this tests whether
the player holds the object specified in the
command in the inventory of carried objects —
ICS(). Obviously, a player cannot drop an object
that he is not carrying! The third test used in the
TAKE routine checks to ensure that the object to be
picked up is at the player’s current location, as
determined by the position variable, P. However,
as the object to be dropped must be held by the
player, its position will not appear in the main
inventory, and this third test 1s, therefore, not
needed by the DROP routine.

Assuming that both tests result in a favourable
outcome, then the following changes must be

made to both the main and the. player's
inventories:

1) The position of the object to be dropped will
now be specified by F. The current position, P, must
be entered in the main inventory array in position

—IVS(F2).
2) The object description must be deleted from the
player’s personal inventory of objects carried,
ICS(). This is best done by searching through the
array until the appropriate object is found and
replacing it with a null string.

The logic of the DROP routine is shown in the
flowchart. Here is the listing for the routine in the
Haunted Forest game:

3900 REM ****x DROP S/R. kexx é
39190 GOGSUBS300:REM VALID OBJECT

3920 IF F=@ THEN SN#="THERE IS NO "+tW$:GOSUBS55aa:

RETURN

3930 :

394@ REM *x* IS OBJECT IN CARRIED INVENTORY **

39358 OV=F :GOSUBS45a

3960 IF HF=@ THEN SNS="YOU DO NOT HAVE THE "tIV¥%

CF,1)5 Oreos RETURN

3970

3980 REM ** DROP OBJECT x*x

3990 SNS="YOU DROP THE "+IVS(F,1):GOSUBS500

4000 IVSCF ,2.=STRSC(P)SREM MAKE ENTRY IN INVENTORY

4020 REM ** DELETE OBJECT FROM CARRIED INVENTORY

4030 FOR J=1TO02

4940 IF ICSC J)=IVSCF,1) THEN ICSC J2=""s J=2

40590 NEXT J

4060 RETURN

It can be seen that one of the major advantages of
programming in modules is that the same routines
can be accessed for different purposes. By using a
system of flags, decisions can be made within short

—$_$<— oe

#)

subroutines that are not acted upon until control is
returned to the routine that called the subroutine.
A good example of the use of this type of program
structure is the validity test described earlier. This
subroutine is called by both the TAKE and DROP
routines. In each case, the subroutine makes a
decision as to the validity of the object part of the
command phrase. However, the flow of the
program is not altered until a RETURN is effected to
either the TAKE or DROP routines. Only after
returning is the value of the flag, F, set by the
validity test subroutine and the appropriate
branch made. One criticism of this technique is
that we are effectively testing the same condition
twice — once to set the flag value, and again to test
the value of the flag. Although this is true, the
added flexibility and ease of debugging achieved
by employing this technique usually outweighs the
slightly longer execution time that results.

SPECIAL LOCATIONS
We are now at the point in our project where we
have completed the programming of the game’s
skeleton; that is, the programming that allows the
player to.carry objects and move around in the
adventure world. We can now move on to the next
phase of design in which we consider the ‘special’
locations where objects are put to use, perils are
met and where the player’s ingenuity and skill are
tested. ae

Before we look in detail at the programming of
_ the routines for one of the special locations in the
Haunted Forest, let’s consider the additions to be
made to the main program loop in order to detect
special locations. These two lines must be inserted
into the listing:

eon GOSUB2700:REM {iS FP SPECIAL, 7

258 IF SF=1 THEN 300:REM NEXT INSTRUCTION

Line 257 calls a subroutine to see if the current
location is special. If this is the case then a ‘special
flag’, SF, is set to one. This means that when control
is eventually returned to the main program loop,
the part of the main loop dealing with instructions
can be avoided. The subroutine that decides
whether the current location is special or not is:

2700 REM x*xx*x IS P SPECIAL SYR xxx

2705 SF=O@:REM UNSET SPECIAL FLAG

2716 REM «xx OTHER SPECIAL LOCATIONS xx

ere ON P GOSUBd45946,4699 ,4798,4598

27360 RETURN

You will recall that, when we designed the original
map for the Haunted Forest, we numbered the
four special locations first (see page 766). We can,
therefore, simplify the selection of the appropriate
subroutine for each special location by making use
of the ON. .. GOSUB command. As can be seen by
the way it is used in line 2720, this command is
followed by a series of line numbers, and the
appropriate line number is selected according to
the value of P. If P is one, for example, the
command will GOSUB to the first line number from
the list; uf P is two, then the second line number will
be used for the GOSUB call, and so on.

There are four line numbers, one for each of the

special locations in Haunted Forest. If P exceeds
four, then control simply passes to the following
line. If each of the four subroutines that can be
called from line 2720 sets an SF flag, then the fact
that P was a special location can be flagged. If no
routine is called, the SF flag will remain set at zero,
indicating that P is just an ordinary location. The
ON. .. GOSUB command is clearly an economical
alternative to a series of IF... THEN statements
testing the value of a variable and branching to
different subroutines accordingly.

THE TUNNEL ENTRANCE
Two of the special locations in the Haunted Forest
are the two entrances to a tunnel (locations 1 and
4). To deal with the simple scenario of the player
wishing to enter the tunnel, we need to construct
carefully a routine that handles the normal
commands and allows the player to enter the
tunnel or retreat back down the path. |

4598 REM *#k* TUNNEL ENTRANCE S/R kxxx
460@ SF=1
4605 SN#="YOU HAVE ARRIVED AT THE MOUTH OF A LARGE
TUNNEL ":GOSUBS50@
4619 SNS="YOU CAN ENTER THE TUNNEL OR RETREAT
ALONG THE PATH": GosuBS559e
4620... a:
4625 PRINT! INPUT" INSTRUCTIONS"? IS
4629 GOSUB250@:REM SPLIT INSTRUCTION
4635 IF F=@ THEN 4625:REM INVALID INSTRUCTION
4637 GOSUB3Q@00:REM NORMAL INSTRUCTIONS
4648 IF MF=1 THEN RETURN:REM PLAYER RETREATS
$645 IF VF=1 THEN 4$625:REM INSTRUCTION OBEYED

46560 REM **x NEW INSTRUCTIONS xx

4655 IF VB#="ENTER" THEN GOSUB 476080: RETURN

4660 IF VB#="RETREAT" AND P=4 THEN MF=1:P=6:RETURN

4665 IF VB#="RETREAT” AND P=1 THEN MF=1:P=95RETURN

4667 SN#="T DON'T UNDERSTAND”: GOSUBS5S@6:GOTO 4625

The routine starts by setting SF to one to indicate
that a special location has been reached. After
displaying a message on the screen, describing the
tunnel entrance and the options open to the
player, an instruction is asked for. Once again,
rather than re-inventing the wheel each time we
wish to analyse an instruction, we can take
advantage of the modular construction of the
program to call up the ‘split instruction’ and
‘normal command’ subroutines developed for use
in the TAKE and DROP routines. By considering
carefully the states of the various flags set by these
two subroutines, we can transfer control within
our new routine as required. Let’s consider these
flags individually.

The F flag set by the ‘split instruction’ routine
indicates whether-the instruction passed to it has a
valid format. If the instruction is a one-word
command not recognised by the routine, then F
takes the value zero — in which case we will want
to loop back to get another instruction.

The MF flag is set by the ‘normal command’
routine if a description of a location is required —
this happens when a GO or LOOK command. is
issued. A RETURN to the main program loop will
allow the new location to be moved to, in the
former case, or the same location to be described
and the special routine re-entered, in the latter
case. |

The VF flag is also set by the ‘normal command’
routine. A value of one indicates that the

THE HOME COMPUTER ADVANCED COURSE 867

20000000

instruction was recognised and obeyed, in which
case we should loop back for the next instruction.
If VF<>1 then the command is not one of the
normal commands. Having dealt with the normal
command possibilities we can add new commands
to this routine. In this case, two such instructions
are included: ENTER, to go into the tunnel, and
RETREAT, to move one location away from the
tunnel entrance. As this routine is designed to
work for both entrances to the tunnel, the RETREAT
command must take account of which end of the
tunnel the player is negotiating — this is indicated
by P taking the value 1 or 4. P can, therefore, be
reset accordingly before leaving the routine so that
a change of location is made on re-entry to the
main program loop.

_ The special perils that await the adventure
player once inside the tunnel are the subject of the
next instalment. |

868 THE HOME COMPUTER ADVANCED COURSE

PROFESSIONAL
HEAVY WEIGHT
IBM- compatible “machines are OW

insane the business market. These are
usually cheaper and offer more facilities
than the machine they mimic, and many
more are designed to be ‘transportable’.
Here we examine one of the earliest IBM-
compatible portables, the Compaq Plus. |

When the IBM Personal Computer was launched
in the United States, it brought a certain
respectability to the microcomputer.
Businessmen, who had previously regarded such
devices as little more than gimmicks, were happy
to buy from the acknowledged giant of the
computer industry. As software houses began to
produce a vast number of programs for the IBM, it
was perhaps inevitable that many hardware
manufacturers would produce computers capable
of running IBM software and so take advantage of
the huge software base that was accumulating.

One of the first in this field was the Compaq
Computer Corporation — a company formed
specifically to produce an IBM-compatible
portable machine, the Compaq Plus. The model
examined here is the 256 Kbyte twin-disk version,
although the machine is also available with a single
drive, or with a 10 Mbyte fixed hard disk.

CARRY THAT WEIGHT
‘Portable’ is perhaps something of a misnomer for
a machine weighing 14kg (28lb) — it is certainly
difficult to carry it for more than a short distance.
However, Compaq has at least recognised the
problem of moving such a large weight around and
has provided a padded vinyl handle that makes
carrying easier on the fingers.

As is usual with portable computers, the
Compaq keyboard clips onto the front of the
computer. As the carrying handle is fitted to the
back, this means that the keyboard also serves as
the base. However, the machine is sturdily built
and the keyboard seems to accept the weight and
subsequent rough handling quite happily. The
complete unit is approximately the size of a sewing
machine. Once unclipped, the keyboard is
connected to the computer by a thick coiled cable.
The manufacturer claims that this enables the
keyboard to be positioned to allow comfortable
working. However, once the keyboard is pulled
more than about eight inches from the unit it
begins to be dragged back by the coils, thus
limiting the distance between screen and user. A
thinner cable would have removed this restriction.

The keyboard, like the computer itself, has
folding legs that enable it to be angled for more

comfortable working. As one would expect on a
business computer like the Compaq Plus, the keys
are easy to use and reliable. The keyboard layout is
identical to that of the IBM PC, with 10 function
keys on the left-hand side of the typewriter keys
and a numeric keypad on the right. The obvious
advantage of this layout is that users who are
familiar with the layout of the IBM will be able to
use the Compaq keyboard instantly without
having to learn the position of the new keys. The
disadvantage is that the IBM keyboard is not ideal
and therefore design problems are duplicated. The
Enter Key on the IBM is the same size as the other
keys, which makes it difficult to find. Perhaps more
seriously for touch-typists, the Shift key is not in its
usual place below the ‘A’ key. Instead the backslash
key occupies this position, which means a touch-
typist will, for a while at least, be continually
hitting backslash instead of Shift. These are
problems that recur on the Compaq.

While running MS-DOS (the Microsoft version
of PC-DOS), the function keys on the left of the
keyboard act as editing aids. These functions
change depending on the applications program
being run. Under Basic, for example, they become
single keyword entry keys such as LOAD, SAVE and
LIST. A similar system is also used for the function
keys on MSX machines.

The numeric keypad on the right of the
keyboard has a dual function. In normal operation

THE HOME COMPUTER ADVANCED COURSE 869

Compackaging
The sleek and uncluttered lines
of the Compaq’s case are
echoed in the simple front panel
and its reasonable facsimile of
the IBM PC keyboard. Flaps on
either side of the case give
access to the ports and power
supply, and storage space for
both the power lead and the
mains plug — an important and
often overlooked point!

CHRIS STEVENS

it can be used to move the cursor around the
screen, but if the Num Lock key is pressed it can be
used as a calcviator.

The screen is a standard 17.7em X 13.3cm
green monitor, giving an 80 X 25 character
resolution. The text is easily read and there is a
brightness control on the right-hand side of the
screen. On the left-hand side are the twin 5;in
floppy disk drives. As the standard configuration
of the Compaq Plus is a single disk drive, the MS-
DOS system master disk will assume this to be the
case and will ask for all disks to be placed in drive
A — this can be a nuisance when a disk is being
copied as the user must continually swap disks.
However, MS-DOS may be configured to make
full use of both drives. The drives themselves
appear to be quieter than their IBM counterparts.

OUTSIDE CONNECTIONS
Beneath a panel on the right-hand side of the
machine are the interface ports. The Compaq Plus
is fitted with a Centronics-type parallel printer
port, an RGB interface and an RF port. Three
expansion slots are also provided, allowing IBM
plug-compatible boards to be fitted. Typical
additions are extra memory boards, a VDU colour
card or a modem that allows the computer to
communicate over the telephone network.
Beneath another panel on the left-hand side is the
power input — a standard three-pin Eurosocket —
above which is the on/off switch. To the side is the
fan that keeps the inside of the machine cool.
Inside the computer, the circuitry is protected by a
metal casing (which accounts for the machine's
weight); this not only provides protection against
rough handling but also shields the machine from
radio interference that might disrupt processing.
The metal also acts as a heat sink.
_Accompanying the computer are three manuals

— an operations guide, and MS-DOS and BAsic
reference guides. Unusually for this type of
machine the guides are paperback books, instead
of the more usual ringbinders. The books are held
with the system disks in ‘mock suede’ plastic

870 THE HOME COMPUTER ADVANCED COURSE

folders. Of the three manuals, only the operators’
guide is tutorially based. Thus anyone wishing to
be taken through the various steps of using BASIC or
MS-DOS would be advised to buy other
instruction books.

As one of the older IBM-compatible machines
the Compag, like the PC itself, uses the Intel 8088
processor instead of the more advanced 8086 chip
used by some of its newer rivals such as the Olivetti
M25. Although the 8088 is a 16-bit processor with
a 20-bit address bus, it has an eight-bit data bus as
opposed to the 16-bit bus used in the 8086. This
means that the Compaq is much slower in
retrieving data than its 8086-equipped
competitors, although of course it runs at the same
speed as the PC.

On the all-important question of compatibility
with IBM software, the Compaq Plus scores
highly. Even a notoriously difficult program such
as Lotus 1-2-3 will run on the machine. However,
as the chairman of Compag is also on the board of
Lotus Software, this is perhaps not surprising. One
of the few things that the Compag Plus will not run
is the IBM diagnostic disk, but as that program
interrogates the BAsic Input-Output System
(BIOS) ROM directly, this should not raise any
eyebrows either.

The Compag Plus is definitely one of the most
reliable IBM compatibles on the market, with a
proven track record. This counts for a lot to
someone who is going to spend £2,524 on a
compatible machine. Obviously no one wants to
spend that kind of money only to find that a
particular program required by the user will not
fui. :

On the negative side, the machine is beginning
to show its age — and not only because of the
outdated 8088 chip. It is beginning to look as
though the days of the 10kg-plus ‘transportable’
are numbered. With lap-held computers
becoming ever more sophisticated, the lap-held
IBM-compatible machine is inevitable and
‘transportables’ such as the Compaq Plus will
become redundant.

CHRIS STEVENS

e

CHRIS STEVENS

THE HOME COMPUTER ADVANCED COURSE 871

Interactive Graphics
Lisadraw is an interactive
graphics program for Apple's
Lisa computer. Each of the
pixels on the Lisa’s screen can
be turned on or off, giving the
user a graphics screen with
resolution as high as some CAD/
CAM computers

INTEGRATED CIRCUIT
An integrated circuit (IC) is one that is etched onto
a single silicon chip, and performs a specific task.
The. development of the integrated circuit has
revolutionised the electronics industry. ICs have
various advantages over discrete devices on a
printed circuit board; fundamentally, the
miniaturisation that is achieved makes possible an
increase in the speed of operation and a reduction
in power consumption. Furthermore, once the
chip has been designed and _ developed,
manufacturing costs are drastically reduced.

The first integrated circuits were developed in
the late 1950s by Jack Kilby, an employee of Texas
Instruments. Since then, four generations of
integrated circuits have been developed. ‘These
are: small scale integration (SSI), medium scale
integration (MSI), large scale integration (LSI)
and very large scale integration (VLSI). Many
scientists now estimate that the limits in the
refinement of such miniaturisation have probably
been reached and the search is on for a
replacement technology.

There are essentially two types of integrated
circuit. MOS (Metal Oxide Semiconductor)
integrated circuits are the more commonly used in
microcomputers, since they can be highly packed
with the necessary diodes and transistors, and they
consume very little power. They also have the
advantage of being fairly easy to manufacture.

The other type, bipolar integrated circuits, are
more commonly used on mainframes and
minicomputers. These are constructed by the
more traditional technology of using positive and
negative junction semiconductors to etch the
circuitry on the layers of silicon that make up the
chip. This makes bipolar ICs more difficult to
construct. Other disadvantages are that they have
a much lower packing density, and they consume
much more power. However, their operating
speeds are faster than MOS circuits.

INTELLIGENT TERMINAL
An intelligent terminal, usually consisting of a
keyboard and screen, is one that is able to perform .
its own processing — the results of which can then
be transferred to a larger computing network, such
as a mainframe. Intelligent terminals have a
microprocessor onboard to perform tasks such as
simple calculations and screen editing — tasks
which would otherwise occupy the valuable
computing time of the mainframe computer.

INTERACTIVE GRAPHICS
A computer system in which pictures and graphics
can be altered and amended in immediate
response to an input by the user is said to have
interactive graphics. The use of such systems is
becoming increasingly § widespread on
microcomputers, particularly with _ the
introduction of integrated software packages such
as Lotus 1-2-3, which allows information in a
spreadsheet to be displayed instantly as pie, line or
bar graphs. In these applications, interactive

872 THE HOME COMPUTER ADVANCED COURSE

¢

graphics are used as an aid to understanding the
data. Interactive graphics also encompasses such
areas as computer aided design (see page 235) and
the creation of graphic displays.

Print “Edit _ Tupe Stute . Page Layout airangement. Lines « Shedes z SERENE) ome Gudoet Orv | a

kibbbbhbhbbe head. q
faabbkh ehhh aay. |] :

INTERFACE
An interface is a hardware device or a software
program that provides a boundary between
systems or programs, allowing them to pass data.
Almost by definition computer systems use signals
or data that cannot be understood by other
systems. An interface therefore, will contain some
method of translating the information into a form
that can be understood by the target system.
A hardware interface consists of the cables,

plugs and circuitry needed to connect devices
together. A software interface is the part of the
program that connects mutually exclusive
modules or code together. Generally a software
interface will pass parameters and variables
between one part of the program and another.

INTERPRETER
The central processor units of computers operate

— in logical fashion on the binary patterns of current
that swirl through the system; the people who use
computers like to use the words and ideas and
symbols that comprise thought. This antithesis is
resolved in the programming language, but that
still has to be translated for machine consumption.
Interpreters — machine code programs that
translate higher-level languages — are cheap,
frugal and effective translation devices — popular
with microcomputer manufacturers for those very
reasons. When the source program is entered into
the system the interpreter intercepts the command
keywords and translates them into command
codes; otherwise the program is left untouched.
When the program is executed the interpreter can
act on the keyword codes directly but must
translate the rest of the program text by rather
clumsy methods; when a program line is executed
only action is produced — there is no stored
machine code output. This means that in a loop,
for example, the interpreter may interpret and
execute a line and then repeat this process
immediately afterwards as if the instruction had
never been encountered before.

ZEFF/WHELAN

SE ss

Our s Series s of articles 0 on n the L LOGO 0 language
has concentrated on developing routines
and procedures for handling data and
producing turtle graphics displays. Here we
use the language to display data in an easily-
understandable form, and we present a
routine for the construction of barcharts.

Barcharts are a aiible graphical one of
representing certain types of numerical data. The
aim of a barchart is to help the reader to
understand at a glance a set of figures without
having to examine them in great detail. Business
graphics programs are widely available for
plotting barcharts, pie charts, and histograms, and
these programs are often linked to spreadsheets so
that the values calculated in these can be
effectively displayed.
We won't be quite so ambitious for the moment,

but let’s start by looking at how to draw a barchart
using Loco. The version of the program we will
discuss is for the Commodore 64 — see ‘Logo
Flavours’ for any changes that are needed for the
program to run on other machines.

The process of drawing a barchart splits up into
three stages:

a) get the input;
b) find the largest value (this is necessary so that we
can scale the columns to fit on the screen);
c) draw out the barchart, scaling as appropriate,
and then add labels.

The top-level procedure is called BARCHART. INIT
sets the value of a number of constants needed by
the program. By collecting them together in one
place, modifications are easier to make. COLORS
contains the list of colours to be used for the
columns — if you do not like our colour scheme,
change it! The program as it stands will print a
maximum of 15 columns, so you will need only 15
colours at most.

INPUT AND CALCULATION
The necessary input consists of two data items for
each bar of the chart: first, the title to be printed at
the foot of the bar, and, second, the quantity or
value of the bar — effectively, its height. In our
input routines we have incorporated some simple
‘validation’ checks to make sure that the input is
sensible. GET.INPUT splits the job of obtaining input
into two parts, getting titles for each column and
inserting the relevant values. When you've finished
inputting the data, type END as the next ‘title’.

GET.TITLE gets the title; this will reyect a blank
entry but will accept any other value.

CHART TOPPER

GET.QUANTITY will accept only a number as an
input — any other input will cause the program to
ask for the data to be entered again. When
GET.INPUT has a valid name/number pair, these
are added to the end of a list of data items. Items
should be entered in the order you wish to see
them plotted across the screen, from left to nght.

CALCULATE uses GET.MAX to find the largest
value and then uses this to establish a scale. A
common ruleis that the height of a barchart should
be about three-quarters of the width. Ne

DRAWING THE CHART
DRAW.CHART calculates the width of each bar of the
barchart, draws an axis up the screen, colours in
the bars and then labels them.

The width is calculated as a multiple of eight.
This is done in order to avoid some problems —
caused by the way the Commodore 64 displays —
colours, for in the normal LoGo graphics mode you ©
can’t have two colours in the same eight’ by eight
pixel block. DRAW.AXIS draws the line up the screen
and marks on it the highest of the data values; this
gives us a simple means of estimating the values of -
the columns.
We must step back from the axis line before

printing this number next to the mask indicating
the highest value. How far we need to step back so
that the number doesn’t overprint the line will
depend on how many digits there ‘are in the
number. This problem is easily solved, for LoGo
treats numbers as if they were words, so we can use ©
COUNT to determine the length of the number, and
then use this to determine how far to step back. -

WRITE prints a message on the graphics screen.
This takes three inputs: the x and y step distances
for each character and the name to be written. It
uses a primitive, STAMPCHAR, which prints a
character on the graphics screen at the turtle’s
position. —

DRAW.CHART1 performs the task of drawing the —
bars. It takes each item in turn, selects the next
colour to be used, scales the height and passes the
real work over to FILL, which simply goes up and
down the bar filling it in. LABEL uses WRITE to write
the labels vertically down the screen (very long
labels will ‘wrap around’ and appear at the top of
the screen).

PIE CHARTS
Pie charts are another common form of graphical
representation. If you want to write a program to
draw a pie chart, here’s a few hints:

eData is obtained in exactly the same way as for
the barchart.

THE HOME COMPUTER ADVANCED COURSE 873

eThe calculation section involves totalling the
numbers and hence determining what share of the
360° making up the ‘pie’ segment will have. _
eDrawing and filling in the slices of the pie is
simple enough, but on the Commodore 64, at
least, you will have some problems because of the
way the colours run into each other. It’s a good
idea to use ‘double colour’ mode — just use
DOUBLECOLOR instead of DRAW in the procedure
that draws the chart. If you are still having
problems then leave a ‘hole’ of 10 units in the
centre of the pie chart.

The actual labelling can be done in the same way
as for the barchart, although problems may arise
when you position the turtle before doing the
writing.

Once you've achieved this, why not try writing a
program that draws both a pie chart and a barchart
for the same data side by side?

874 THE HOME COMPUTER ADVANCED COURSE

THE HOME COMPUTER ADVANCED COURSE 875

. ¥ -

___MICRO eae
ELECTRONICS =a |

In the last instalment of Worksho
completed the first phase of assembly of our
robot and tested this by writing a short
program to bring it under keyboard control.
Now we mount four microswitch sensors on
the robot and write a simple program to test

requires four of the eight user port data lines
available to us. This leaves four lines that can be
used to carry information from the sensors back to
the computer. To give our robot more flexibility in
its operation, we will use a ‘patching system’ to
allow the connection of different permutations of
the sensors to the four available input lines. For the
moment, we will connect four microswitch sensors
and in the future we will instal two light sensors. So
that we can select any combination of these
sensors — for example, two microswitch sensors
and two light sensors — we will wire each sensor to
a socket on the lid of the robot. Four sockets will
also be connected to the data lines — D4.to D7 —
on the D plug. We can therefore connect the
appropriate sensor to any of the four data lines by
using a short patch lead, which plugs into the
sensor socket at one end and one of the data line
sockets at the other.

To test the construction and wiring of the four
microswitches we can write a very simple program
that scans the upper four bits of the data register
and displays the decimal values of the bits sent low.
Run the program with all four sensors connected,
via the patch socket system, to the data lines, D4 to
D7. Closing any of the microswitches will cause
the screen display to change.

876 THE HOME COMPUTER ADVANCED COURSE

REM **** BBC SENSOR TEST **#*
MODE 7:0P=-1 :DDR=&FE62:DATREG=&FES60 : 7DDR=15
PE=240-(?DATREG AND 240):I1F PE=O0P THEN 30
CLS:PRINT PE:OP=PE:GOTU 30

REM **** CBM SENSOR TEST #x**
OP=—-1 :DDR=56579:DATREG=56577:POKE DDR,15
PE=240-(PEEK(DATREG) AND 240)9:IF PE=OP THEN 30
PRINT CHR(147):PRINT PE:OP=PE:GOTO 30

ee

ae

. KEVIN JONES

Lid Holes
VIEWED FROM ABOVE

SLOTS FOR
MICROSWITCHES

RIGHT-ANGLED BEND IN MICROSWITCH LEVER
SWITCH ¢@— =

ACTIVATOR

RIGHT-ANGLED
BEND IN ‘NO’
CONNECTOR LID

Microswitch
Mounting

SIDE VIEW

With the microswitches
mounted, turn the lid over.
Solder short lengths of
covered wire to each of the
four red patch sockets and
connect these to the relevant
pins on the D plug. The four
COM connectors should be
connected to each other, and
the earth pin on the D plug, in
a ring circuit, as shown. Each
NO connector should then be
connected to the appropriate
blue socket. Make up four
patch cords for use with the
patch system

Ff 15mm | tomm_ | 15mm | |

~ 5mm DIAMETER HOLES

PATCH SOCKET

HOLES

PATCH
SOCKETS

MICROSWITCH

CONNECTIONS

PROTRUDING

. THROUGH LID

MICROSWITCH
PATCH NO

SOCKETS

THE HOME COMPUTER ADVANCED COURSE 877

KEVIN JONES

[\
Rt ‘eae

a (fl \\
|\\ |
\
| [|

BBC MEMORY
MAPPING
In the first part of this series we looked at
how an operating system is arranged in
general terms and examined, in particular,
how the BBC Micro’s OS is arranged. In this
instalment, we'll look at how the BBC OS
actually uses its memory, and how vectors

The BBC Acros ankesnt use toe various areas sot
memory, many of which have multiple functions.

_ Atypical example of this is page &9 of the memory
— the area of RAM between locations &900 and
_&9FF — which is used, at different times, as the
RS232 output buffer, a cassette output buffer,
speech workspace and extended sound
workspace! No one can accuse Acom of not
getting the most from its memory.
A further example is the block from &0E00 to

& 1900; in a BBC Micro with a cassette recorder as
its filing system, this area of memory is free for use
aS BASIC program space. However, when a disk

_ system is being used, this area is used as disk filing
system workspace, reducing the amount of
memory left for BAsiIc programs by over 2.5
Kbytes. This is extremely annoying in screen
Modes 0 to 2, where memory is restricted anyway.

The final example of multiple use of memory is
the area between &8000 and &BFFF. Ifa DFS ROM,
a word processor or utility ROM is fitted in the
machine it will occupy this block. This is also the
area of memory that the BAsic interpreter ROM
resides in. These are called ‘paged ROMs’; only
one of them can be active at any one time. The
ROM required is selected by the operating system,
and ‘switched in’, or ‘paged in’ — hence the name.
Under normal circumstances, the BASIC ROM is
paged in, and the Basic interpreter is running, thus
enabling us to type in and execute BASIC programs.
However, when we execute a DFS command, the
OS pages the DFS ROM, executes the command,
and then pages the BASIC ROM back in. During the
execution of the DFS commands, the BAsic ROM
is simply ignored. Other ROMs, such as the
Telesoftware Filing System or the Wordwise word
processor chip, also occupy this memory space
and are also paged in and out as required. It’s
probably just as well that the BBC Micro uses the
same area of memory for several purposes, as
otherwise there” be little memory left for us to
work with.

USER MEMORY
Once the OS has taken its share of the computer

memory, what remains is the available user
memory. The Basic system variable PAGE contains

878 THE HOME COMPUTER ADVANCED COURSE

the address of the Start of BAsIc program area, and
the variable HIMEM points to the start of the screen
display memory; the space between is available for .
BASIC programs, variables and machine code
programs. Type in this instruction to find these
addresses, and the memory available for BAsIC
programs:

PRINT PAGE, “HIMEM “(HIMEM-PAGE) “BYTES FREE”

In the following table, youll find a bmief
description of the relative merits of different
storage areas for machine code in the BBC Micro.

For most routines that are to be used in
conjunction with BASIc programs, storing the code
in the BASIC program area is the best method.

Once the machine code is in memory, it
- generally needs some workspace to allow it to run.
Most 6502 machine code programs require some
zero page locations as workspace, mainly because
certain indexed addressing instructions will need
zero page locations. Acorn have made extensive
use of this page for the OS, but some locations
have been set aside for machine code
programming. A byte by byte account of what
each of the OS locations does is little use to the
programmer, and directly accessing these
locations is not encouraged — the useful locations
should be accessed by calling the appropriate OS
versions, thus creating problems when a machine
code program written under one OS version is run
under a different version.

ENTERING THE OS
The two major routes we can take to use the
routines resident in the BBC OS are the OSBYTE
and OSWORD routines:

—_— - - 1. Se ee EEE = ee = ———

—————— mma sdieeeeen An

@ OSBYTE enables us to affect the behaviour of
many OS routines, by passing control codes and
parameters in the A, X and Y registers of the 6502.
In BASIC, we can access the OSBYTE routines via the
*FX command. *FX is followed by either two or
three numbers: the first number is the control or
function code passed to the A register; the second
is the number passed to the X register; and the third
is the number passed to the Y register. The third
parameter is not required by all OSBYTE calls. In
machine code, OSBYTE is called at address &FFF4.
These two versions are equivalent in function:

The value in the A register defines exactly what a
particular call to OSBYTE will do. The above call,
for example, affects the actions of the cursor Keys;
the parameter passed over in the X register
specifies whether the cursor keys retain their
normal editing function or whether they simply
return an ASCII code.

It’s a sad fact of life that all OS routines cannot
be affected by OSBYTE. Its main drawback is the
limit on the number of parameters that you can
pass over to the routine. If we ignore the contents
of the A register, which tells the OS which routine
within OSBYTE we wish to use, then we can only ~
pass two parameters in the X and Y registers. If we
want to pass any more than this then we use the
second routine, OSWORD.
@ OSWORD enables us to do such things as sound
generation, disk reads and writes, and so on. This
is the difference between OSWORD and OSBYTE;
OSBYTE affects howthe OS does certain tasks, and
OSWORD enables us to doparticular tasks. OSWORD
obtains its parameters from a parameter block that
is pointed to on entry to the OSWORD routine by the
6502 X and Y registers. This parameter block is
situated in RAM, and its size and arrangement
depend upon the OSWORD call being made. The A
register contains a function code that determines
which of the OSWORD functions are to be executed
by the OS. Once the registers and the parameter
block have been prepared, OSWORD is called at
address &FFF1. OSBYTE and OSWORD are the
principal means of entry to the OS; because of
their importance, we'll look at them in greater
detail in later parts of the series.

Other OS routines are entered, from Basic, by
typing in an asterisk (*) followed by the command.
The presence of the * causes the command
following it to avoid the BAsic interpreter and be
passed to an OS routine that bears the name OSCLI,
meaning the ‘Operating System Command Line
Interpreter’. This interprets the OS commands that
are typed in and acts upon them by calling the
appropriate routines in the OS. Such commands
are often called * or Star Commands. The table
shown lists those Star Commands recognised by
the BBC; any not recognised, spelt incorrectly or

Se, O_O

x x COGS

PAGED ROMS

without the correct number of parameters will
usually give the Bad Command error message.

We can pass commands to the Command Line
Interpreter (CLI) by using the OS routine or by the
direct method. OSCLI’s uses are twofold: first of all,
it enables us to pass the commands shown in the
table to the CLI from machine code should we want
to; and secondly it enables us to pass BAsIc string
variables over to the CLI. The programs that follow
feature both these uses. Notice that the integer
variables, A%, X% and Y%, pass their values
directly into the A, X and Y registers. X% (or the X
register) and Y% (or the Y register) point to the
position in memory of the string of characters, that

THE HOME COMPUTER ADVANCED COURSE 879

LIZ DIXON

* is to be treated as a * command, and is to be
interpreted and executed by the OSCLI routine. X
holds the low byte of the address and Y holds the ~
high byte of the address.

Running this program produces a prompt: the
user types in a * command, presses Return and the ©
command will be executed. The rather odd-
looking DIM statement in line 10 of both these
programs forces the computer to set aside 100°
bytes of memory in the space set aside for BASIC
variables and initialises the variable C with the
address of the start of this block of memory. This
100 bytes can then be used for storing machine
code programs, or, as in this case, data for machine
code programs. The SC=AS statement puts the
bytes that make up the command string held in AS
into the block of 100 bytes, starting at the first byte
reserved by the DIM command. In both programs,
the X and Y registers (or the X% and Y% variables)
are set up and the call is made to OSCLI. The
command string is then executed.

This program is the basis of a routine for use in
menu-driven programs, where it might be useful
to allow the user to do things like catalogue disks
or tapes without leaving the program. The
command required is simply put in to the string
variables and passed to OSCLI for execution.
Typing in *AS will not work. The OS will attempt
to execute a command called *AS, which amy
doesn’t exist!

Using this technique, it is also possible to pass
numeric variables to a * command by using the
STRS function to convert them into strings.
Normally, the CLI will not accept any variable —
names passed to it; it gives the Bad Command error
message instead of trying to evaluate the variable
concerned.

Any * * command that is not recognised by the

OS is passed over to any paged ROMs. Each oneis
asked if it recognises the command; if it does then

VaNEWaw Lvs way iw MW

880 THE HOME COMPUTER ADVANCED COURSE

it executes it. Commands not passed for execution
in this fashion are then treated as bad commands
only if a fast filing system, such as a disk drive, is
not in use. If it is, then the disk will be inspected to
see if it contains a file with the same name as the
command (without the *). If it does, then the file is
loaded into the machine and treated as a machine
code program. This can cause big problems if the
file isn’t a machine code program! The computer
usually ‘hangs’ until you put it out of its misery. If
such a file isn’t found then the Bad Command error
message is printed.

The “ Commands

~ NOW IS THE TIME
Gel ORDER ANY COPIES

Copies of any weekly issue can be Sbtained:
subject to the availability of stocks, by using this

— reply-paid order form and marking clearly
which issues you require to be sent to you.

OR BINDERS YOU MAY BE
MISSING FROM YOUR -

~ COLLECTION. |
_ Each issue costs 80 eek Li | |

~ postage and packing, and please.enclose your

toed Limited.
~ cheque/postal order made ease Orbis

‘Back Numbers Order Form. ©
Please send me the back numbers | have

: circled below,

(p Set Searels aC)

eA a 19, ae
ye AB. 19, 00, he Be

ae:

15.7 16:

93 94

1 30:

39 40

Each issue costs 80 pence including
: postage and packing.

| enclose a cheque/postal order made payable to:

~ Orbis Publishing Ltd, for a total of £
which | understand includes the cost of postage and

eacnng.

NB: plaace allow 28 days for the delivery of both back
numbers and binders. |

When you have completed the order form above for
back numbers and/or binders, fill in your name and
address in the space provided.

Htcaevireloiale is-velejucreliaiss to detach the
page, enclose your cheque/postal order, and fold the

page carefully.

NO STAMP NECESSARY.

Binder Order Form.

- Please send me the binder volume Fumisers

| have ticked below. ©

LJ Volume 1

L] Volume 3 |
L] Volume 2

~ O Volume 4

Binders are £3.95 each inclusive of postage |

and packings. ©

Important: Please read this 5 eet
—1.Do not complete this order form if you

have already asked for binders to be sent to
you automatically as they are issued.
9. Readers not in the UK or The Republic of

BLOCK CAPITALS PLEASE

Initials Surname

Complete the section below Adthic one
letter, figure or space per square.

| Ireland, see inside front cover for details of how
| toobtain binders and back numbers.

\)

f ¢

GC

Ss o
© aa
UO O

=e ae
eee ee
> ee ©

ooh 8
COVE :
SOS S :oeu
260 Om) a
Ue Ss WON

OO Oe
gQL0, 93
Boe ots

CHO yO WO AOrGe

Ve ce CRG wy Ut One Oe

(No stamp necessary)

a

Rene

‘ a ‘

: |

‘

i

i é
PAN, Be j ee

j

;

4

“

.

=

I

‘

/
é

;

